MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}, \quad a=2, \quad u(x, 0)=2 \cos \frac{5}{2} x, \\ \frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.7 Fourier method

3.31 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}, \quad a=3, \quad u(0, x)=x+2, \\ \frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.8 Fourier method

3.31 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}+t^{2} x^{2}, \\ a=3.5, u(x, 0)=\frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.9 Fourier method

3.81 $

Problem: Solve the boundary-value problem for the homogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}+t, \quad a=1.5 \\ u(x, 0)=\frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.10 Fourier method

3.81 $

Problem: Solve the boundary-value problem for the inhomogeneous wave equation: \[ \begin{array}{l} u_{t t}=a^{2} u_{x x}+t^{2} x, \quad a=2, \\ u(0, x)=\frac{\partial u}{\partial t}(0, x)=u(t, 0)=u(t, l)=0 . \end{array} \]

11.5.2.11 Fourier method

4.32 $

Problem: Find the solution of the Cauchy problem for the heat equation: \[ \begin{array}{l} u_{t}=4 u_{x x}, \\ u(x, 0)=15 \sin 3 \pi x, u(0, t)=0, u_{x}(4.5, t)=0 . \end{array} \]

11.5.2.12 Fourier method

5.09 $

Problem: Find the solution of the Cauchy problem for the heat equation: \[ \begin{array}{l} u_{t}=4 u_{x x}, \\ u(x, 0)=5 \sin 3 \pi x, \quad u(0, t)=u(6, t)=0 . \end{array} \]

11.5.2.13 Fourier method

4.32 $

Problem: Find the solution of the Cauchy problem for the heat equation: \[ \begin{array}{l} u_{t}=8 u_{x x}, \quad u(x, 0)=5 \cos 2 \pi x+6 \cos 3 \pi x, \\ u_{x}(0, t)=u_{x}(6, t)=0, \quad a=\sqrt{8}=2 \sqrt{2}, \quad l=6 . \end{array} \]

11.5.2.14 Fourier method

5.09 $

Problem: Find the solution of the Cauchy problem for the string oscillation equation: \[ \begin{array}{ll} u_{t t}=25 u_{x x}, & u(x, 0)=5 \sin 3 \pi x, \\ u_{t}(x, 0)=0, & u(0, t)=u(3, t)=0 . \end{array} \]

11.5.2.15 Fourier method

3.05 $

Problem: Find the solution of the Cauchy problem for the string oscillation equation: \[ \begin{array}{l} u_{t t}=25 u_{x x}, \quad u(0, t)=u(3, t)=0 \\ u(x, 0)=5 \sin 3 \pi x, \quad u_{t}(x, 0)=20 \pi \sin 4 \pi x . \end{array} \]

11.5.2.16 Fourier method

3.81 $

Problem: Find the solution of the Cauchy problem for the string oscillation equation: \[ \begin{array}{ll} u_{t t}=16 u_{x x}, & u_{x}(0, t)=u_{x}(4, t)=0, \\ u(x, 0)=0, & u_{t}(x, 0)=12 \pi \cos 3 \pi x . \end{array} \]

11.5.2.17 Fourier method

4.32 $

Problem: Find the solution of the Cauchy problem for the string oscillation equation: \[ \begin{array}{l} u_{t t}=9 u_{x x}, \quad u(x, 0)=5 \sin 5 \pi x, \\ u_{t}(x, 0)=0, \quad u(0, t)=0, \quad u_{x}(2.5, t)=0 . \end{array} \]

11.5.2.18 Fourier method

5.09 $

Problem: Solve the problem of oscillations of the string \( 0< \) \( x

11.5.2.19 Fourier method

6.36 $

Problem: Find the temperature distribution in the rod \( 0

11.5.2.20 Fourier method

7.63 $

Problem: Find the solution of the Cauchy problem for the string oscillation equation: \[ \begin{array}{l} u_{t t}=5 u_{x x}, \quad u(x, 0)=e^{-(x-1)^{2}}, \\ u_{t}(x, 0)=3 \cdot e^{-(x-1)^{2}}, \quad u(0, t)=u(2, t)=0 . \end{array} \]

11.5.2.21 Fourier method

4.32 $

  • ‹
  • 1
  • 2
  • ...
  • 67
  • ...
  • 116
  • 117
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login