
14.7.1 Approximate solution of differential equations
Problem:
Find a solution to the boundary value problem, using the finite difference method.
\( \left\{\begin{array}{c}-y^{\prime \prime}+q(x) y=f(x) \\ y(0)=y_{0}, \quad y(1)=y_{1}\end{array} \quad\right. \) with steps \( h_{1}=\frac{1}{3}, \quad h_{2}=\frac{1}{6} \) and estimate the error by the Runge rule.
Plot the graphs of the obtained approximate solutions.
\begin{tabular}{|c|c|c|c|c|}
\hline \( \mathrm{N} \) & \( q(x) \) & \( f(x) \) & \( y_{0} \) & \( y_{1} \) \\
\hline 11 & 1 & \( 1+6 x-x^{3} \) & 1 & 0 \\
\hline
\end{tabular}