MathProblemsBank

19.1.1.2 Properties of metric spaces

Problem: Is the mentioned function \( \rho(x, y) \) a metric in the given set? Fill in the table. \begin{tabular}{|c|c|c|c|c|c|} \hline Set & \begin{tabular}{l} \( \quad \mathbb{R} \) \\ Of real \\ numbers \\ \( x, y \) \end{tabular} & \begin{tabular}{l} \( \mathbb{R}^{3} \) \\ Of 3 dimension vectors \\ \( x=\left(x_{1}, x_{2}, x_{3}\right) \) \\ \( y=\left(y_{1}, y_{2}, y_{3}\right. \) \end{tabular} & \begin{tabular}{l} \( \qquad \quad S(\mathbb{R}) \) \\ Of all possible \\ sequences of real \\ numbers \\ \( x=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \) \\ \( y=\left(y_{1}, y_{2}, \ldots, y_{n}, \ldots\right) \) \end{tabular} & \begin{tabular}{l} \( \qquad F_{c}([a ; b], \mathbb{R}) \) \\ Of countinuous \\ functions \\ \( x(t):[a ; b] \rightarrow \mathbb{R} \) \\ \( y(t):[a ; b] \rightarrow \mathbb{R} \) \end{tabular} & \begin{tabular}{l} \( \qquad M \) \\ Of the cells \( x, y \) of \\ the chessboard \( 8 \times \) \\ 8 \end{tabular} \\ \hline Function \( \rho(x, y)=\cdots \) & \( \cos |x-y| \) & \( \sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}} \) & \( \sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right| \) & \( \int_{a}^{b}|y(t)-x(t)| d t \) & \begin{tabular}{l} The minimum \\ number of the \\ knight moves on the \\ way from \( x \) to \( y \) \end{tabular} \\ \hline Colclusion: & & & & & \\ \hline \begin{tabular}{l} Function \( \rho \) doesn't set a metric in the given set, since it's \\ not defined for all pairs \( (x, y) \) \end{tabular} & & & & & \\ \hline \begin{tabular}{l} Function \( \rho \) doesn't set a metric in the given set, since it \\ isn't non-negative \end{tabular} & & & & & \\ \hline \begin{tabular}{l} Function \( \rho \) doesn't set a metric in the given set, since it \\ isn't non-degenerate \end{tabular} & & & & & \\ \hline \begin{tabular}{l} Function \( \rho \) doesn't set a metric in the given set, since it \\ doesn't have symmetry property \end{tabular} & & & & & \\ \hline \begin{tabular}{l} Function \( \rho \) doesn't set a metric on the given set, since it \\ doesn't satisfy the triangle inequality \end{tabular} & & & & & \\ \hline Function \( \rho \) doesn't set a metric on the given set. & & & & & \\ \hline \end{tabular}