Problem:

Prove that the set of rational numbers \mathbb{Q} is countable.

Solution:

Let's prove that \mathbb{Q} is countable.
The set of rational numbers $\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, n \neq 0, m, n \in \mathbb{Z}\right\}$, we can assume that the denominator of any rational number is positive, and the sign of the number coincides with the sign of the numerator \Rightarrow
$\Rightarrow \mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m \in \mathbb{Z}, n \in \mathbb{N}\right\}$ for any $m \in \mathbb{Z}$.
Let's denote
$Q_{m}=\left\{\left.\frac{m}{n} \right\rvert\, n \in \mathbb{N}\right\}=\left\{\frac{m}{1} ; \frac{m}{2} ; \frac{m}{3} ; \ldots\right\} \Rightarrow \mathbb{Q}=\underset{m \in \mathbb{Z}}{\cup} Q_{m}$.
Now we obviously have a one-to-one correspondence $Q_{m} \leftrightarrow \mathbb{N},(\forall m \in \mathbb{Z})$, since $\frac{m}{n} \leftrightarrow n, n=1,2, \ldots$, it means that Q_{m} is countable when $m \in \mathbb{Z}$. But the set of integers is countable, and we know that the union of countable numbers of countable sets is countable $\Rightarrow \underset{m \in \mathbb{Z}}{\cup} Q_{m}$ is also countable, but $\mathbb{Q}=\underset{m \in \mathbb{Z}}{\cup} Q_{m} \Rightarrow \mathbb{Q}$ is countable.

