

Problem:

Let the set $A \subset \mathbb{R}$ is open, and $B \subset \mathbb{R}$ is closed. Prove that the set $A \setminus B$ is open, and $B \setminus A$ is closed.

Solution:

From the properties of operations on sets $\Rightarrow A \setminus B = A \cap \overline{B}$.

According to the definition of closed set, *B* is closed $\Rightarrow \overline{B}$ is open, and the intersection of a finite number of open sets is open $\Rightarrow A \cap \overline{B}$ is open $\Rightarrow A \setminus B$ is open.

From the properties of operations on sets $\Rightarrow \overline{B \setminus A} = \overline{B \cap \overline{A}} = \overline{B} \cup \overline{A} = \overline{B} \cup A, B$ is closed $\Rightarrow \overline{B}$ is open, *A* is open $\Rightarrow \overline{B} \cup A$ is open $\Rightarrow \overline{B \setminus A}$ is open $\Rightarrow B \setminus A$ is closed, in accordance with the definition.