Problem:
Determine the character of the resting point of the following system:
$x^{\prime}=-y, \quad y^{\prime}=x-2 y$.
Solution:
$(*)\left\{\begin{array}{cl}x^{\prime}=-y & M(x ; y)=-y, \\ y^{\prime}=-x-y\end{array} \quad \begin{array}{ll} & N(x ; y)=x+2 y\end{array} \quad \Rightarrow\right.$ the resting point $x=y=0, \quad M(0 ; 0)=N(0 ; 0)=0$.
Let's determine the eigenvalues of the matrix of the system.
$A=\left(\begin{array}{ll}0 & -1 \\ 1 & -2\end{array}\right) \cdot \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}-\lambda & -1 \\ 1 & -2-\lambda\end{array}\right|=0 \Rightarrow \lambda(\lambda+2)+1=0, \lambda^{2}+2 \lambda+1=0, \lambda_{1}=\lambda_{2}=-1$.
$\operatorname{Re}\left(\lambda_{1}\right)=\operatorname{Re}\left(\lambda_{2}\right)=-1<0 \Rightarrow$ according to Lyapunov's first theorem, the system $(*)$ is unstable at the resting point.

Answer: the resting point of the system is unstable.

