Problem:

Determine the character of the resting point of the following system:
$x^{\prime}=-2 x+\frac{1}{3} y, \quad y^{\prime}=-2 x+\frac{1}{2} y$.

Solution:

$\left\{\begin{array}{ll}x^{\prime}=-2 x+\frac{1}{3} y & M(x ; y)=-2 x+\frac{1}{3} y \\ y^{\prime}=-2 x+\frac{1}{2} y & N(x ; y)=-2 x+\frac{1}{2} y\end{array} \quad \Rightarrow\right.$ the resting point $x=y=0, M(0 ; 0)=N(0 ; 0)=0$.
Let's find the eigenvalues of the matrix of the system:
$A=\left(\begin{array}{cc}-2 & \frac{1}{3} \\ -2 & \frac{1}{2}\end{array}\right), \quad \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}-2-\lambda & \frac{1}{3} \\ -2 & \frac{1}{2}-\lambda\end{array}\right|=0, \quad(2+\lambda)\left(\frac{1}{2}-\lambda\right)-\frac{2}{3}=0, \lambda^{2}+\frac{3}{2} \lambda-\frac{1}{3}=0$,
$6 \lambda^{2}+9 \lambda-2=0, \lambda_{1}=\frac{-9+\sqrt{129}}{2}, \lambda_{2}=\frac{-9-\sqrt{129}}{2}, \lambda_{1} \cdot \lambda_{2}<0 \Rightarrow$ the singular point will be the saddle.
Next $\lambda_{1}>0 \Rightarrow$ according to Lyapunov's first theorem, the resting point of the system is unstable.
Answer: the resting point of the system is unstable.

