Problem:

Determine the character of the resting point of the following system:
$x^{\prime}=x+2 y, y^{\prime}=-3 x+y$.
Solution:
$\left\{\begin{array}{ll}x^{\prime}=x+2 y & M(x, y)=x+y=0 \\ y^{\prime}=-3 x+y & N(x, y)=-3 x+y=0\end{array} \Rightarrow\right.$ the resting point $x=y=0, M(0 ; 0)=N(0 ; 0)=0$.
Let's find the eigenvalues of the matrix of the system. $A=\left(\begin{array}{cc}1 & 2 \\ -3 & 1\end{array}\right), \operatorname{det}(A-\lambda I)=\left|\left(\begin{array}{cc}1-\lambda & 2 \\ -3 & 1-\lambda\end{array}\right)\right|=0$, $(1-\lambda)(1-\lambda)+6=0,(\lambda-1)^{2}=-6, \lambda=1 \pm i \sqrt{6}$. Since $\operatorname{Re}\left(\lambda_{1}\right)=\operatorname{Re}\left(\lambda_{2}\right)=1$, then the singular point will be the focus, and integral curves have the form of a spiral, twisting around the beginning of the coordinates. Next $\operatorname{Re}\left(\lambda_{1}\right)=\operatorname{Re}\left(\lambda_{2}\right)=1>0 \Rightarrow$ according to Lyaponv's first theorem the resting point of the system $(*)$ is unstable.

