
20.5 Mathematical statistics
Problem:
According to the results of a selective study the distribution of average milk yields from one cow per day in a farm (liters) was found.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Interval & \begin{tabular}{c}
\( 7,5- \) \\
10,5
\end{tabular} & \begin{tabular}{c}
\( 10,5- \) \\
13,5
\end{tabular} & \begin{tabular}{c}
\( 13,5- \) \\
16,5
\end{tabular} & \begin{tabular}{c}
\( 16,5- \) \\
19,5
\end{tabular} & \begin{tabular}{c}
\( 19,5- \) \\
22,5
\end{tabular} & \begin{tabular}{c}
\( 22,5- \) \\
25,5
\end{tabular} & \begin{tabular}{c}
\( 25,5- \) \\
28,5
\end{tabular} & \begin{tabular}{c}
\( 28,5- \) \\
31,5
\end{tabular} & \begin{tabular}{c}
\( 31,5- \) \\
34,5
\end{tabular} \\
\hline \begin{tabular}{l}
Number \\
of cows
\end{tabular} & 2 & 6 & 10 & 17 & 33 & 11 & 9 & 7 & 5 \\
\hline
\end{tabular}
Find the probability \( P(15,4