MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: An elementary random function has the form \( Y(t)=a X+t \), where \( X \) is a random variable, distributed in accordance with the normal law with the parameters \( m, \sigma\left(p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}\right) \), \( a \) is a non-random value. Find the characteristics of the elementary random function \( Y(t) \).

15.1.1 Theory of random processes

3.81 $

Problem: Let \( S_{0}=0, S_{k}=\xi_{1}+\cdots+\xi_{k}, 1 \leq k \leq n \), where \( \xi_{1}, \ldots, \xi_{k} \) are independent normally distributed, \( \mathcal{N}(0,1) \), random variables. Let \( \phi(x)=P\left\{\xi_{1} \leq x\right\} \), \( \mathcal{F}_{k}=\sigma\left(\xi_{1}, \ldots, \xi_{k}\right), 1 \leq k \leq n, \mathcal{F}_{0}=\{\emptyset, \Omega\} \). Show that for any \( a \in R \) the sequence \( X=\left(X_{k}, \mathcal{F}_{k}\right)_{0 \leq k \leq n} \) with \( X_{k}=\phi\left(\frac{a-S_{k}}{\sqrt{n-k}}\right) \quad \) is a martingale.

15.1.2 Theory of random processes

6.36 $

Problem: A random process \( X(t)=u \cos t+v e^{t}+t \), is given, where \( u \) and \( v \) are random variables with \( M(u)=M(v)=2 ; \quad D(u)=D(v=0.2) \), \( \operatorname{cov}(u, v)=0,1 \). Find the characteristics of the random process \( Y(t)=2 X^{\prime}(t)-2 \).

15.1.3 Theory of random processes

3.81 $

Problem: The random process \( X(t) \) is given by the canonical expansion \( \quad X(t)=(t+1) u+\sin t \cdot v+e^{-3 t} \), where \( D(u)=D(v)=3 \). Find: a) the characteristics of the random process \( X(t) \); b) the characteristics of the random process \[ Y(t)=e^{2 t} \int_{0}^{t} X(\tau) d \tau \text {. } \]

15.1.4 Theory of random processes

5.09 $

Problem: Let \( X(t) \) be a stationary random function with a correlation function \( K_{x}(\tau)=e^{-\alpha|\tau|}, \alpha>0 \). Find the spectral density \( S_{x}(\omega) \).

15.1.5 Theory of random processes

3.05 $

Problem: The random function \( X(t) \) has the characteristics \( m_{X}(t)=0, \quad k_{x}\left(t, t^{\prime}\right)=\frac{1}{1+\left(t-t^{\prime}\right)^{2}} \). Find the characteristics of the random function \( Y(t)=\int_{0}^{t} X(t) d t \) and find out whether \( X(t), Y(t) \) are stationary?

15.1.6 Theory of random processes

3.81 $

Problem: The random process has the form: \( X(t)=V \cdot e^{-t}+a t^{2} \), where \( V \) is a random value, distributed according to the exponential law with the parameter \( \lambda, a= \) const. Find the expected value, the mathematical expectation, the normalized autocovariance function and the dispersion of \( t^{2} X(t) \).

15.1.7 Theory of random processes

3.81 $

Problem: The characteristics of the random process \( X(t) \) are known: \( m_{X}(t)=2 t^{2}-1, R_{X}\left(t_{1}, t_{2}\right)=2 e^{-3 t_{1}-t_{2}} \). Find the expected value and the dispersion of the process \( Y(t)=\frac{d X(t)}{d t}-2 \).

15.1.8 Theory of random processes

2.54 $

Problem: A random process \( Y(t)=a+X t^{2} \) is given, where \( X \) is a random variable: \( f(x) \sim R[0 ; 3] \). 1) Draw the trajectory of \( Y(t) \), 2) Find: \( M[Y(t)], K_{Y}\left(t_{1}, t_{2}\right), D[Y(t)] \).

15.1.9 Theory of random processes

3.81 $

Problem: A random process \( Y(t)=a+X t \) is given, where \( X \) is a random variable: \( f(x) \sim N[2 ; 2] \). Find: \( M[Y(t)], K_{Y}\left(t_{1}, t_{2}\right), D[Y(t)] \), draw a family of trajectories of \( Y(t)=a+X t \).

15.1.10 Theory of random processes

3.05 $

Problem: A random process \( Y(t)=a t+X \) is given, where \( X \) is a random variable: \( f(x) \sim R[-2 ; 2] \). Find: \( \quad M[Y(t)], K_{Y}\left(t_{1}, t_{2}\right), D[Y(t)] \), draw the family of trajectories of \( Y(t)=a+X t \).

15.1.11 Theory of random processes

3.81 $

Problem: The random process \( X(t), t \geq 0 \), is defined by the formula \( X(t)=\alpha \cos (t+\beta)+\varepsilon \), where \( \alpha, \beta, \varepsilon- \) are independent random variables, moreover, \( \alpha \sim N(0,1), \varepsilon \sim N\left(0, \sigma^{2}\right), \beta \sim U[-\pi, \pi] \). Find: \( P\left(X\left(t_{1}\right) \leq X\left(t_{2}\right) \mid \alpha \geq 0\right) \), where \( 0 \leq t_{1} \leq t_{1} \leq \frac{\pi}{2} \).

15.1.12 Theory of random processes

3.81 $

Problem: The random process \( X(t), t \geq 0 \), is defined by the formula \( X(t)=\alpha \cos (t+\beta)+\varepsilon \), where \( \alpha, \beta, \varepsilon \) are independent random variables, moreover \( \alpha \sim N(0,1), \varepsilon \sim N\left(0, \sigma^{2}\right), \beta \sim U[-\pi, \pi] \). Is the process \( X(t), t \geq 0 \) stationary in broad sense?

15.1.13 Theory of random processes

6.36 $

Problem: A random process \( \xi(t)= \) const, \( n-1 \leq t \leq n \), \( \forall n \in \mathbb{N} \) is given. The values of \( \xi(t) \) when \( t \in(n, n+1] \) and \( t \in(m, m+1] \) are independent random variables \( (n \neq m) \), with a probability density \[ P(x)=\frac{|x|^{\lambda}}{2 \Gamma(x+1)} e^{-|x|} . \]

15.1.14 Theory of random processes

6.36 $

Problem: Find the expected value, correlation function and the variance of the random function \( X(t)=X_{1} \cdot e^{2 t}-X_{2} \cdot \cos 5 t+3 t^{2}-1 \), where \( X_{1} \) and \( X_{2} \) are uncorrelated random variables with characteristics: \( m_{X_{1}}=0,2, m_{X_{2}}=0,3, D_{X_{1}}=0,01 \), \( D_{X_{1}}=0,04 \).

15.1.15 Theory of random processes

3.81 $

  • ‹
  • 1
  • 2
  • 3
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login