MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Examine the indicated series with positive terms for convergence. 1. \( \sum_{n=1}^{\infty} \frac{n^{n}}{(n+1) !} \), 2. \( \sum_{n=1}^{\infty}\left(\frac{1}{\ln (n+1)}\right)^{2 n} \).

2.10.1 Number series

1.27 $

Problem: Examine the alternating series for convergence and absolute convergence: \[ \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2 n+1)}{n} \text {. } \]

2.10.2 Number series

0.51 $

Problem: With an accuracy of \( \varepsilon=0.001 \) find the partial sum \( S \) of the series \[ S=\sum_{n=1}^{\infty}\left(\frac{4 n+7}{6 n+5}\right)^{n^{2}} \cdot / \]

2.10.3 Number series

3.81 $

Problem: With an accuracy of \( \varepsilon=0,001 \) find the partial sum \( S \) of the series \[ S=\sum_{n=1}^{\infty} \frac{(3 n+2)^{2}}{7^{n}} . \]

2.10.4 Number series

3.81 $

Problem: With an accuracy of \( \varepsilon=0,001 \) find the partial sum \( S \) of the series \[ S=\sum_{n=1}^{\infty} \frac{n}{(3 n+2)^{2}} \text {. } \]

2.10.5 Number series

3.81 $

Problem: Examine the series for the absolute and conditional convergence: \[ \sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{1}{3 n-1} \text {. } \]

2.10.6 Number series

0.51 $

Problem: Examine the series for absolute and conditional convergence: \[ \sum_{n=1}^{\infty}(-1)^{n+1} \cdot a_{n}, \quad \text { where } a_{n}=\frac{1 \cdot 4 \cdot \ldots \cdot(3 n-2)}{3 \cdot 5 \cdot \ldots \cdot(2 n+1)} \]

2.10.7 Number series

0.76 $

Problem: Examine the series for absolute and conditional convergence: \[ \sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{\ln n}{n} . \]

2.10.8 Number series

0.76 $

Problem: Examine the series for absolute and conditional convergence: \[ \sum_{n=3}^{\infty}(-1)^{n} \cdot \frac{1}{n \ln n(\ln \ln n)^{3}} . \]

2.10.9 Number series

1.27 $

Problem: Examine the series for absolute and conditional convergence: \[ \sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{n^{2}}{2^{n}} . \]

2.10.10 Number series

0.76 $

Problem: Examine the series for absolute and conditional convergence: \[ \sum_{n=3}^{\infty}(-1)^{n} \cdot \frac{1}{n \ln n \sqrt{\ln \ln n}} \]

2.10.11 Number series

1.27 $

Problem: Make sure that Leibniz test can't be applied to the series \( \sum_{n=1}^{\infty} N_{n} \) with the terms given below \( (k \in N) \). Examine this series for convergence in other ways. \[ a_{n}=\left\{\begin{array}{lc} \frac{1}{\sqrt{k+1}+1}, \quad n=2 k-1 \\ -\frac{1}{\sqrt{k+1}-1}, \quad n=2 k \end{array}\right. \]

2.10.12 Number series

1.27 $

Problem: Make sure that the Leibniz test cannot be applied to the series \( \sum_{n=1}^{\infty} N_{n} \) with the terms \( (k \in N) \) indicated below. Examine this series for convergence in other ways. \[ a_{n}=\left\{\begin{array}{cc} \frac{1}{3^{k}}, & n=2 k-1 \\ -\frac{1}{2^{k}}, \quad n=2 k \end{array}\right. \]

2.10.13 Number series

1.27 $

Problem: Examine the series for convergence: 1. \( \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n !} \), 2. \( \sum_{n=1}^{\infty} \frac{3 n+3}{4^{n}} \).

2.10.14 Number series

1.02 $

Problem: Examine the series for convergence. \[ \sum_{n=1}^{\infty}(-1)^{n} \cdot\left(\frac{3 n-2}{3 n+2}\right)^{n} \]

2.10.15 Number series

1.02 $

  • ‹
  • 1
  • 2
  • 3
  • 4
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login