MathProblemsBank Math Problems Bank
  • Home
  • Forum
  • About Us
  • Contact Us
  • Login
  • Register
  • language
 MathProblemsBank banner

MathProblemsBank banner

Math Problems and solutions

Mathematics sections
  • Algebra
    • Vector Algebra
    • Determinant calculation
    • Permutation group
    • Matrix transformations
    • Linear transformations
    • Quadratic forms
    • Fields, Groups, Rings
    • Systems of algebraic equations
    • Linear spaces
    • Polynomials
    • Tensor calculus
    • Vector analysis
  • Analytic geometry
    • Curves of the 2-nd order
    • Surfaces of the 2-nd order
    • Lines on a plane
    • Line and plane in space
    • Tangents and normals
  • Complex analysis
    • Operations with complex numbers
    • Singular points and residues
    • Integral of a complex variable
    • Laplace transform
    • Conformal mappings
    • Analytic functions
    • Series with complex terms
    • Calculating integrals of a real variable using residues
  • Differential equations
    • Ordinary differential equations
      • First order differential equations
      • Second order differential equations
      • Higher order differential equations
      • Geometric and physical applications
    • Systems of ordinary differential equations
    • Stability
      • Stability of the equations
      • Stability of the systems of equations
    • Operating method
      • Differential equations
      • Systems of differential equations
  • Differential geometry
  • Discret mathematics
    • Boolean algebra
    • Set theory
    • Combinatorics
    • Graph theory
    • Binary relations
    • Propositional algebra
      • Propositional calculus
      • Sequent calculus
    • Predicate calculus
    • Theory of algorithms and formal languages
    • Automata theory
    • Recursive functions
  • Functional analysis
    • Metric spaces
      • Properties of metric spaces
      • Orthogonal systems
      • Convergence in metric spaces
    • Normed spaces
      • Properties of normed spaces
      • Convergence in normed spaces
    • Measure theory
      • Lebesgue measure and integration
      • Measurable functions and sets
      • Convergence (in measure, almost everywhere)
    • Compactness
    • Linear operators
    • Integral equations
    • Properties of sets
    • Generalized derivatives
    • Riemann-Stieltjes integral
  • Geometry
    • Planimetry
      • Transformations on the plane
      • Construction problems
      • Complex numbers in geometry
      • Various problems on the plane
      • Locus of points
    • Stereometry
      • Construction of sections
      • Various problems in the space
    • Affine transformations
  • Mathematical analysis
    • Gradient and directional derivative
    • Graphing functions using derivatives
    • Plotting functions
    • Fourier series
      • Trigonometric Fourier series
      • Fourier integral
    • Number series
    • Function extrema
    • Power series
    • Function properties
    • Derivatives and differentials
    • Functional sequences and series
    • Calculation of limits
    • Asymptotic analysis
  • Mathematical methods and models in economics
  • Mathematical physics
    • First order partial differential equations
    • Second order partial differential equations
      • d'Alembert method
      • Fourier method
      • With constant coefficients
      • With variable coefficients
      • Mixed problems
    • Convolution of functions
    • Nonlinear equations
    • Sturm-Liouville problem
    • Systems of equations in partial derivatives of the first order
  • Mathematical statistics
  • Numerical methods
    • Golden section search method
    • Least square method
    • Sweep method
    • Simple-Iteration method
    • Approximate calculation of integrals
    • Approximate solution of differential equations
    • Approximate numbers
    • Function Interpolation
    • Approximate solution of algebraic equations
  • Olympiad problems
    • Olympic geometry
    • Number theory
    • Olympic algebra
    • Various Olympiad problems
    • Inequalities
      • Algebraic
      • Geometric
    • Higher mathematics
  • Probability theory
    • One dimensional random variables and their characteristics
    • Theory of random processes
    • Markov chains
    • Queuing systems
    • Two-dimensional random variables and their characteristics
    • Definition and properties of probability
    • Limit theorems
  • Real integrals
    • Integrals of functions of a single variable
      • Indefinite integrals
      • Definite Integrals
      • Improper integrals
    • Double integrals
    • Triple integrals
    • The area of a region
    • Volume of a solid
    • Volume of a solid of revolution
    • Flux of the vector field
    • Surface integrals
    • Curvilinear integrals
    • Potential and solenoidal fields
    • Vector field circulation
    • Integrals depending on a parameter
  • Topology
  • USE problems
  • Variational calculus
Problem list Free problems

Attention! If a subsection is selected, then the search will be performed in it!

Problem: Prove that function \( f(z)=u(x, y)+i v(x, y) \) is differentiable on the entire complex plane and find its derivative \( f^{\prime}(z) \). \[ \begin{array}{l} f(z)=\left(3 x^{3}-6 x y^{2}+2 x^{2}-2 y^{2}-3 x+1\right)+ \\ +i\left(6 x^{2} y-2 y^{3}+4 x y-3 y\right) . \end{array} \]

10.6.3 Analytic functions

2.03 $

Problem: Prove that function \( f(z)=u(x, y)+i v(x, y) \) is differentiable on the entire complex plane and find its derivative \( f^{\prime}(z) \). \[ \begin{array}{l} f(z)=\left(2 x^{3}-6 x y^{2}-3 x^{2}+3 y^{2}+x+2\right)+ \\ +i\left(6 x^{2} y-2 y^{3}-6 x y+y\right) . \end{array} \]

10.6.4 Analytic functions

2.03 $

Problem: Prove that there is an analytic function with a given real \( (u(x, y)) \) or imaginary \( (v(x, y)) \) part and restore it under the given condition \( f\left(z_{0}\right)=z_{1} \). \[ \begin{array}{l} v(x, y)=3 x^{2} y-y^{3}-6 x y-3 y+2, \\ f(i)=3-2 i . \end{array} \]

10.6.5 Analytic functions

3.05 $

Problem: Prove that there is an analytic function with a given real \( (u(x, y)) \) or imaginary \( (v(x, y)) \) part and restore it under the given condition \( f\left(z_{0}\right)=z_{1} \). \[ \begin{array}{l} v(x, y)=3 x^{2} y-y^{3}+6 x y+3 y+2, \\ f(-i)=-3 . \end{array} \]

10.6.6 Analytic functions

3.05 $

Problem: Calculate the value of the derivative of the function at the given point \( z_{0}=x_{0}+i y_{0} \). \[ f(z)=3 z^{3}+3 z^{2}+2 z+1, \quad z_{0}=-2-2 i . \]

10.6.7 Analytic functions

1.27 $

Problem: Find the derivative of the function: \[ f(z)=z^{2}+2 i z-1 . \]

10.6.1 Analytic functions

1.52 $

Problem: For what values of the parameter \( a \) is this function the real (imaginary) part of some analytic function. Find this function. \[ u=x^{3}+6 x^{2} y-3 x y^{2}-a y^{3} . \]

10.6.2 Analytic functions

2.54 $

Problem: Using the argument principle, find the number of roots of the given equation that lie in the right halfplane: \[ z^{4}+2 z^{3}+3 z^{2}+z+2=0 . \]

10.6.8 Analytic functions

4.57 $

Problem: Using the argument principle, find the number of roots of the given equation lying in the right halfplane: \( 2 z^{3}-z^{2}-7 z+5=0 \).

10.6.9 Analytic functions

3.81 $

Problem: Using the argument principle, find the number of roots of the given equation, lying in the right halfplane: \( z^{5}+5 z^{4}-5=0 \).

10.6.10 Analytic functions

3.81 $

Problem: Using the argument principle, find the number of roots of the given equation, lying in the right halfplane: \( z^{12}-z+1=0 \).

10.6.11 Analytic functions

3.3 $

Problem: Using Rouche's theorem, find the number of roots of the equation in disk \( D(0 ; R) \). a) \( z^{3}+z+1=0, \quad R=\frac{1}{2} \). b) \( z^{2}-\cos z=0, \quad R=2 \).

10.6.12 Analytic functions

3.05 $

Problem: Using Rouche's theorem, find the number of roots of the equation in disk \( D(0 ; R) \). a) \( z^{5}+z^{2}+1=0, \quad R=2 \). b) \( z^{4}-\sin z, \quad R=\pi \).

10.6.13 Analytic functions

3.05 $

Problem: Using Rouche's theorem, find the number of roots of the equation in disk \( D(0, R) \). a) \( z^{8}+6 z+10=0 \), \( R=1 \). b) \( \cosh z=z^{2}-4 z, \quad R=1 \).

10.6.14 Analytic functions

3.05 $

Problem: Using Rouche's theorem, find the number of roots of the equation in disk \( D(0 ; R) \). a) \( z^{8}-6 z^{6}-z^{3}+2=0, \quad R=1 \). b) \( 2^{z}=4 z, \quad R=1 \).

10.6.15 Analytic functions

3.05 $

  • ‹
  • 1
  • 2
  • ›

mathproblemsbank.net

Terms of use Privacy policy

© Copyright 2025, MathProblemsBank

Trustpilot
Order a solution
Order a solution to a problem?
Order a solution
Order a solution to a problem?
home.button.login